Определяем наибольшее и наименьшее значение из полученных. — КиберПедия 

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Определяем наибольшее и наименьшее значение из полученных.

2018-01-29 185
Определяем наибольшее и наименьшее значение из полученных. 0.00 из 5.00 0 оценок
Заказать работу

Исследование функции с помощью второй производной

Критическими точками второго рода функции называют те значения аргумента, при которых вторая производная этой функции равна нулю или не существует.

Критические точки второго рода функции находят, решая уравнение .

Если при переходе через критическую точку второго рода вторая производная функции меняет знак, то имеем точку перегиба графика функции.

Если на некотором промежутке выполняется неравенство , то функция вогнута на этом промежутке, а если , то функция выпукла на этом промежутке.

 

Билет №40. Наибольшее и наименьшее значение ф-и на промежутке.

Если функция определена и непрерывна на отрезке , то она на этом отрезке достигает своих наибольшего и наименьшего значений. Если свое наибольшее значение функция принимает в точке , то будет локальным максимумом функции , так как в этом случае существует окрестность точки , такая, что .

Однако свое наибольшее значение функция может принимать и на концах отрезка . Поэтому, чтобы найти наибольшее значение непрерывной на отрезке функции , надо найти все максимумы функции на интервале и значения на концах отрезка , то есть и , и выбрать среди них наибольшее. Вместо исследования на максимум можно ограничиться нахождением значений функции в критических точках.

Наименьшим значением непрерывной на отрезке функции будет наименьший минимум среди всех минимумов функции на интервале и значений и .

Билет №41. Направление выпуклости и точки перегиба гр-ка ф-и.

рафик функции , дифференцируемой на интервале , является на этом интервале выпуклым, если график этой функции в пределах интервала лежит не выше любой своей касательной (рис. 1).

График функции , дифференцируемой на интервале , является на этом интервале вогнутым, если график этой функции в пределах интервала лежит не ниже любой своей касательной (рис. 2).

Теоремы о выпуклости функции и точках перегиба

Теорема

(Об условиях выпуклости или вогнутости графика функции)

Пусть функция определена на интервале и имеет непрерывную, не равную нулю в точке вторую производную. Тогда, если всюду на интервале , то функция имеет вогнутость на этом интервале, если , то функция имеет выпуклость.

Определение

Точкой перегиба графика функции называется точка , разделяющая промежутки выпуклости и вогнутости.

 

(О необходимом условии существования точки перегиба)

Если функция имеет перегиб в точке , то или не существует.

Теорема

(О достаточном условии существования точки перегиба)

Если:

1. первая производная непрерывна в окрестности точки ;

2. вторая производная или не существует в точке ;

3. при переходе через точку меняет свой знак,

тогда в точке функция имеет перегиб.


Поделиться с друзьями:

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.01 с.