Неоднородное линейное уравнение n-го порядка — КиберПедия 

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Неоднородное линейное уравнение n-го порядка

2020-04-01 136
Неоднородное линейное уравнение n-го порядка 0.00 из 5.00 0 оценок
Заказать работу

 

Рассмотрим теперь уравнение

 

 (2.3.1)

 

где  непрерывны на интервале X.

Теорема 3.1 Если у1(x), …, уn(x) - фундаментальная система решений однородного уравнения (4.1), а (x) - частное решение неоднородного уравнения (2.3.1), то любое решение у(x) неоднородного уравнения (2.3.1) представляется в виде

 


 

 (2.3.2)

 

где С1, …, Сn некоторые постоянные.

Замечание. Теорема справедлива при любом выборе частного решения .

Замечание. Теорему 3.1 можно сформулировать и так: общее решение неоднородного уравнения есть сумма частного решения неоднородного уравнения и общего решения однородного уравнения.

Доказательство.

Рассмотрим разность у(x)- (x). Согласно теореме 2.5 эта разность удовлетворяет однородному уравнению (2.2.1), и, значит, по теореме 1.5

 

 

Отсюда и последует (2.3.2).

Таким образом, для построения общего решения неоднородного уравнения нужно помимо фундаментальной системы решений однородного уравнения узнать хотя бы одно частное решение неоднородного уравнения. Покажем сейчас, что зная фундаментальную систему решений, можно найти квадратурой некоторое частное решение (x) неоднородного уравнения.

Зададимся целью построить частное решение (x), удовлетворяющее начальным условиям

 

у(х0) = 0, …, у(n-1)0) = 0. (2.3.3)

 

С этой целью воспользуемся следующим эвристическим рассуждением. Представим f(x) приближённо как сумму функций (элементарных воздействий), равных f(x) в промежутке (x - Dx, x) и нулю в остальных точках. Решение у, отвечающее каждому такому элементарному воздействию, имеющее при x = x0 равные нулю производные до (n-1)-го порядка включительно, является тождественным нулём вплоть до x-Dx, но

 

 

т.е. у(n-1)(x) равно уже не нулю, а f(x)Dx и, таким образом, далее решение также будет не нулём. В силу принципа суперпозиции достаточно построить решение однородного уравнения (ведь вне (x - Dx, x) правая часть равна нулю), принимающее в точке x нулевое значение вместе с производными до(n-2)-го порядка включительно и с производной (n-1)-го порядка, равной единице (обозначим это решение , указывая зависимость от начальной точки, и назовём его импульсной функцией), а затем умножить его на f(x)Dx. Итак,  строится как решение однородного уравнения, удовлетворяющее условиям

 

 (2.3.4)

 

а решение, отвечающее элементарному воздействию, имеет вид f(x)Dx. Суммируя теперь элементарные воздействия на основании того же принципа суперпозиции и перехода от суммы к интегралу, получим решение, удовлетворяющее условию (2.3.3):

 


 

. (2.3.5)

 

Формула (2.3.5) получена на основании эвристических соображений, но нетрудно непосредственной проверкой убедиться, что (2.3.5) есть частное решение уравнения (2.3.1). В этой проверке и будет состоять доказательство следующей теоремы:

Теорема 3.2. Выражение (2.3.5), где функция , называемая импульсной функцией, удовлетворяет однородному уравнению (2.2.1) и начальным условиям (2.3.4), является частным решением неоднородного уравнения (2.3.1), удовлетворяющим нулевым начальным условиям (2.3.3).

Доказательство.

Найдём из (2.3.5) . Предварительно заметим, что так как x является параметром, принадлежащим тому же множеству, что и x, то (2.3.4) равносильно записи

 

 

Дифференцируя (2.3.5), имеем

 

=

 

Возможность дифференцирования под знаком интеграла следует из теоремы о непрерывной зависимости решения системы дифференциальных уравнений от x и начального значения переменной x, т.е. в данном случае от x. Подставляя  в (2.3.1), получим

 

 

так как под интегралом обращается в нуль в силу определения . Таким образом,  действительно является решением уравнения (2.3.1) и, кроме того, очевидно, удовлетворяет (2.3.3).

Замечание. В частности, для уравнения первого порядка формула (2.3.5) совпадает с формулой (1.1.8) при у0 = 0. В импульсной функцией (1.1.8) является множитель , который согласно (1.1.5), удовлетворяет одному уравнению и обращается в единицу при x = x


Поделиться с друзьями:

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.011 с.