Основы дифференциального исчисления . Понятие производной. — КиберПедия 

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Основы дифференциального исчисления . Понятие производной.

2017-12-11 152
Основы дифференциального исчисления . Понятие производной. 0.00 из 5.00 0 оценок
Заказать работу

Основы дифференциального исчисления. Понятие производной.

DX=X1-X – приращение аргумента.

Df(X)=f(X+DX)-f(X) – приращение функции. Пример:

Определение: Произв. функ. f(x) в точке Х наз. предел отношения приращения функ. к приращению аргум., когда последнее стремится к 0.

Геометрический смысл производной.

Ку.к. – угловой коэф. касательной.

Ксек – угловой коэф. секущей.

Таким образом угловой коэффициент касательной совпадает со значение производной в данной точке.

Уравнение касательной к графику функции y=f(x) в точке М0 (x0,y0) имеет вид:

Физический смысл производной.

S(t) – путь за данное время.

DS(t) – приращение пути.

DS(t)/ Dt –средняя скорость на участке.

мгновен. скорость на участке:

произв. пути от скорости: S'(t)=U(t)

Теорема: Связь между непрерывной и дифференцируемой функцией.

Функция наз. диферинцируемой если она имеет производную.

Если функция диффер. в точке х, то она и непрерывна в этой точке.

Доказательство:

 

Правила дифференцирования

Теорема: Если f(x) и g(x) дифферен. в точке х, то:

Доказательство 2-го правила. Теорема о произв. сложной функции.

Если y(x)=f(u(x)) и существует f’(u) и u’(x), то существует y’(x)=f(u(x))u’(x).

Доказательство:

Рассмотрим f(x) в задан. промеж.: [a,b].

g(y): [f(a),f(b)] – наз. обратной к f(x), если g(f(x))=x, для любого " X Î[a,b]

f(g(y))=y, для любого у Î[f(a),f(b)]

y=sin x [-p/2, p/2], тогда

x=arcsin y, yÎ[1,1]

sin arcsin y = y;

arcsin * sin x=x

Теорема о произв. обратной функции.

Таблица производных:

 

Таблица производных:

Доказательство:

Дифференциал функции.

Определение: Если Х независимая переменная, то дифференциал функции f(x) наз. f’(x)Dx=u обозначают df(x).

Теорема об инвариантной форме первого дифференциала.

df(x)=f’(x)dx

Доказательство:

1).

2).

 

Производная высших порядков.

Определение: Производная второго порядка называется производная производной данной функции:

Определение: Производная n-го порядка называется производной производной n-1-го порядка.

Пример:

Используя метод математической индукции несложно показать, что:

1). n-ая производная обладает свойством линейности, т.е.:

2).

3).

4).

5).

6).

Дифференцирование функций заданных параметрически.

Пример 1:

возьмем t=1, тогда x=2, y=3; y’(2)=7/3

Пример 2:

Основные теоремы матим. анализа.

Теорема Ферма.

Если f(x) дифф. в точке x0 и принимает в хтой точке наибольш. или наименьш. значение для некоторой окресности точки x0, то f’(x)=0.

Доказательство:

пусть f(x0) – наибольшая.

Теорема Ролля.

Если функция f(x) непрерывна на заданном промеж/ [a,b] деффер. на интервале (a,b) f(a)=f(b) то существует т. с из интерв. (a,b), такая, что f’(c)=0.

Теорема Коши.

Если f(x), g(x) удовл. трем условиям:

1). f(x), g(x) непрерыв. на промеж [a,b]

2). f(x), g(x) деффер. на интервале (a,b)

3). g’(x)¹0 на интер. (a,b), то сущ. т. с

g(b)¹g(a) (неравны по теореме Ролля).

1). F(x) – непрерывна на [a,b]

2). F(x) – дефференцированна на (a,b)

3). F(a)=0; F(b)=0

по теореме Ролля сущ. сÎ(a,b); F’(с)=0

Теорема Лагранжа.

Если функция f(x) непрерывна на [a,b] и дефференцирована на (a,b), то сущест.

т. с(a,b), такая, что: f(b)-f(a)=f’(c)(b-a).

Доказательство: применим т.Коши, взяв только g(x)=x, тогда g’(x)=1¹0.

Правила Лопиталя.

Раскрытие неопределенности.

Теорема: Если функция f(x), g(x) дефференцирована в окресности т. а, причем f(a)=g(a)=0 и существует предел

Доказательство:

Формула Тейлора.

Определение: многочлен Тейлора n-го порядка функции f(x) в точке x0 назыв.

Пример:

Определение: остаточным членам формулю Тейлора n-го порядка наз.:

Теорема: Если функция F(x) (n+1) – дефферен. в окресности точки x0, то для любого x из этой окресн. сущ. т. с(x0, x)

 

 

Правила дифференцирования.

Выпуклость графика функции.

Опр. График функции y=f(x) называется выпуклым вниз (вверх) если он расположен выше (ниже) любой касательной проведенной к графику функции на данном интервале.

 

Теорема: Достаточный признак выпуклости графика функции вниз.

Если функция f(x) дважды дефференц. на нтервале (a,b) и ее вторая производн. f’’(x)>0 на интервале (a,b), то график функции y=f(x) выпуклый вниз на интервале (a,b).

Уравнение касательной:

Возьмем X=x.Из первого вычтем второе

Поэтому y>Y следовательно график функции расположен выше касательной

Аналогично, если f’’(x)<0 на (a,b) то график функции y=f(x) - выпуклый вверх, на данном интервале.

Асимптоты.

Опр. Часть графика называется бесконечной ветвью если при движении точки по этой части, расстояние между ей и началом координат стремится к бесконечности.

Опр. Прямая называется асимптотой бесконечной ветви графика функции, если при удалении точки от начала координат по этой ветви, расстояние до данной прямой стремится к нулю.

Теорема 1: x=a (вертикальная прямая) – является асимптотой для бесконечно вертикальной ветви графика функции y=f(x), тогда когда f(x)®µ, при x®a.

Теорема 2: Критерий существования наклонной асимптоты прямая y=kx+b является асимптотой для правой (левой) ветви графика функции тогда, когда существует предел при:

Док-во: Точка M0(x0,y0) и прямая

L: Ax+By+Cz=0, то расстояние

Пусть y=kx+b

асимптота =>

d(M,l)®0=>

kx-f(x)+b®0

тогда f(x)-kx®b

при x®+µ

существует предел:

Теорема: Необходимый признак существования наклонной асимптоты. Если прямая l: y=kx+b –

наклонная асимп. для правой наклонной ветви, то:

 

Док-во:

Пример:

x=1 – верт. Асимптота, т.к.

f(x)®µ, когда x®1

Вывод: y=0×y+1 – наклонная асимптота для левой и правой ветви.

Примерная схема исследования графика функции.

1).Область определения.

2).Четность (нечетность), переодичность, точки пересечения и др.

3). Непрерывность, точки разрыва, вертикальные асимптоты.

4). Исследование на убывание (возвр.) в точках экстремума.

5). Исследование на выпуклость.

6). Построение графика функции.

Пример:

1). (-¥,+¥)

2).не периодическая.

нечетная, если фун. не изменила знак, значит фун. нечетная y=0óx=0

3). непрерывная (-¥,+¥)

4).

5).

6).

y=0×x+0;y=0 – наклонная асимптота.

 

Основы дифференциального исчисления. Понятие производной.

DX=X1-X – приращение аргумента.

Df(X)=f(X+DX)-f(X) – приращение функции. Пример:

Определение: Произв. функ. f(x) в точке Х наз. предел отношения приращения функ. к приращению аргум., когда последнее стремится к 0.

Геометрический смысл производной.

Ку.к. – угловой коэф. касательной.

Ксек – угловой коэф. секущей.

Таким образом угловой коэффициент касательной совпадает со значение производной в данной точке.

Уравнение касательной к графику функции y=f(x) в точке М0 (x0,y0) имеет вид:


Поделиться с друзьями:

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.062 с.